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Determination of transient creep parameters 
for HPSN by dynamic bending tests 
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Universit~t Karlsruhe, Institut for Zuverlassigkeit und Schadenskunde im Maschinenbau, 
West Germany 

A procedure is proposed which allows to determine creep parameters, mainly in the tran- 
sient creep range, by dynamic bending tests. From measurements on HPSN at 1200 ~ C 
creep exponents in the range 5 < n  < 12 were found. The influence of creep on bending 
strength is investigated. 

1. Introduction 
Fracture in bending tests of ceramic materials is 
caused by flaws introduced during fabrication or 
surface preparation. In the case of subcritical crack 
extension before final unstable crack growth, the 
fracture stress is dependent on the loading rate. By 
application of linear elastic fracture mechanics it is 
possible to predict this dependency from the 
material parameters of subcritical crack extension 
or to determine these parameters from the 
measured fracture stress. At high temperatures 
creep may complicate the fracture behaviour. If 
the creep parameters for transient creep are known, 
corrections can be introduced in the linear elastic 
fracture mechanics relations [1, 2]. In this paper 
it is shown that these creep parameters can be 
evaluated from the same dynamic bending tests 
that have to be performed anyway to obtain the 
subcritical crack growth parameters. 

2. Creep behaviour of HPSN at elevated 
temperatures 

High temperature creep behaviour of ceramic 
materials can be described by creep curves which 
are similar to those of most metals. Hot pressed 
silicon nitride (HPSN) shows typical creep curves 
under constant load demonstrated by the results 
of Kossowsky et al. [3] and Din and Nicholson 
[4] (Fig. 1). In the first stage (I) the creep rate 
decreases from high initial values until a constant 

creep rate is reached in the steady-state stage (II). 
Finally, in the third stage (III), the creep rate 
accelerates producing cracks followed by failure. 
The third stage will not be found under all test 
conditions. 

Creep curves can be described by an equation 
proposed by Pao and Matin [5, 6] as the sum of 
elastic, transient and steady-state components 

= d/E + a(Co n -- e ')  + Bo  n (1) 

where e' means the transient creep strain accumu- 
lated during load application. Since the stress rate 
is expressed in terms of stress and strain, Equation 1 
is called a strain hardening formulation. 

For dynamic bending tests in the first region of 
transient creep where e ' ~  Co n, Equation 1 is 
simplified to become 

~ O/E + D o  n (2) 

with D = a C + B .  In this approach creep rate 
becomes only dependent on Stress. 

3. Stress-deformation behaviour under 
constant strain rate condition 

By application of Equation 2 the stress-strain 
behaviour in the transient stage can be calculated 
for different cases of deformation. In this chapter 
the case of a tensile test with constant strain rate 

will be examined. First, some abbreviations will 
be defined 

0022-2461/84 $03.00 + .12 �9 1984 Chapman a n d H a l l L t d .  1791 



1.0 

"~ 0.5 

I I 
o: HS-110-3,11Z,9~ o'=I03. Z, N mm -2 

b: HS-130-A,1260~ ,d= 68.9 N mrr52 

J J  i 

50 100 
(a) time (h) 

150 

3.0 

.=_ cJ 
1.5 

I I 

o'=68.9 N mrrr 2 

~ ~ ~ ~ o  _ ~ 1350~ 

1300oc 

I I I 
(b) 60 120 180 

t ime (h) 

Figure 1 Creep curves of HPSN at elevated temperatures measured by (a) Kossowsky et al. [3] and (b) Din and 
Nicholson [4]. 

u = a / o =  a= = 

(3) 
U e = ae/aoo O e = 4Et 

o~ is an upper boundary value of stress, which 
would occur, if Equation 2 were valid for 
unlimited strains and time, respectively. From 
Equation 2 one obtains an integral representation 

fl ' d .  
1 - -  u n - Ue (4) 

3.1. Analy t ica l  solut ions for  integer n 
Equation 4 can be integrated for integer values of  
n. The first solutions are 

artanh ( a / o . )  + ~arctan (o/a=) = ae/O= 

for n = 4 (8) 

[ Oe/O for oe/o= < 1 
a/o'o~ = / for n ~ oo (9) 

1 for ae/a= ~> 1 

For other integers n > 4 the solution of Equation 4 
can also be expressed by %lementary functions [7]. 
Unfortunately, the solutions are given implicitly 
if n >  2. 

The results are shown in Fig. 2. Because of 
Equation 3, oe/a~ stands for time and strain, 
respectively. 

o = ao~[1--exp(--ae/aoo)]  fo rn  = 1 (5) 

o = a= tanh (Oe/a~) fo rn  = 2 (6) 

1 1 -- o/aoo 1 20/0= + 1 
In 1 + o/o= + (a/a=) 2 + ~ arctan 31/2 

= ae/o~ f o r n = 3  (7) 

3.2. App rox ima te  solut ion for the 
st ress-stra in behavior in tensile tests 

To transfer the o - e  behaviour from tensile tests to 
bending tests, explicit representation of stresses 
is necessary. From curves in Fig. 2 we note that 
the higher the value of n, the later the curve devi- 
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Figure 2 Stress-strain curves in 
tensile tests, calculated with 
Equation 4. 
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Figure 3 Parameter m as a function of creep exponent n. 

ates from the initial straight line. This indicates 
that an expression 

o/aoo = t a n h l / m ( o J a = ) m  within  = f ( n )  (10) 

should give a good approximation. 
The parameter m was determined under the 

condition, that the approximation and exact 
solution was identical for Oe/Oo~ = 1. The relation 
between rn and n is depicted in Fig. 3 and can be 
expressed by 

m = 0.207 + 0.3965n (11) 

The maximum inaccuracy of Equations 10 and 11 
is better than -+ 1% in the range 1.5 ~<n ~< 15. In 
case o f n  = 2, Equation 10 is exact. 

4. Bending moment in dynamic 
bending tests 

In dynamic bending tests the reaction of the 
deformed bar is given by the bending moment  M. 
In case of symmetrically distributed stresses M is 
given by 

f h/Zo(x)xdx  (12) M = 2 b o o  

where b is the thickness and h is the height of  the 

specimen, and x is the distance from the neutral 
axis. 

By application of the hypothesis of Bernoulli 
that plane cross-sections will remain plane during 
bending deformations, we get 

e(x)  = e (1 )2x /h  

Oe(X) = ae (1 )2x /h  oe(1) = e(1)E 

o=(x)  = o=(1) (2x /h )  vn a~(1) = (~(1)/D) 'In 

(13) 

The bracket (1) stands for 2x /h  = 1, i.e. for the 
outer fibre. Analytical solutions of Equation 12 
can be obtained for n = 1 and n -+ oo 

4 .1 .  C a s e n =  1 

Introducing Equations 5 and 13 in Equation 12 
leads to 

M = ~bh2eoo(1){1 - exp [-- Oe(1)/o=(1)]} 

(14) 
and asymptotically, if %(1)  ~ ~o 

M= = ~bh2o=(1) = We=(1) (15) 

Thus it yields 

M/M= = 1 -- exp ( - -Me~M=) 
(16) 

Me = Oe(1)W 

4 .2 .  Case n -+ oo 

In this special case the stress-strain relation is 
given by Equation 9. The accompanying bending 
moment  becomes 

t, h/2 
= foOoX X+ j ,  o.xax 

with ( 17 ) 
t O'oo 

x = ) h /2  
oe(1 

The integration yields 

M / 2 b  = ~oooh 2 l 3 2 2 - - ~ a a ~ h  /Oe(1 ) (18) 

M= = �88 = } o = W  (19) 

with the result 

M 
- 1 --  ~ ( M = / M e )  2 for Me/M= > 2/3 

Moo 
(20) 

M Me 
- for Me~Moo <~ 2/3 

M= Moo 

4.3. General case 1 < n < oo 

The general case 1 < n  can be treated by appli- 
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Figure 4 Bending moments in dynamic 
bending tests, calculated with Equations 
16, 20 and 22. 

cation of  Equation 10. Substitution of  Equations 
10 and 13 into Equation 12 gives 

M = 3Wa~(1) 

x ;~ y(n § 1)In {tanh [Oe(1)/eoo(1)y (n- l ) / ,  ] re}lira dy 

with y = 2x/h. 
At high outer fibre strains an upper boundary value 
of the bending moment  appears 

3 / /  
M .  = W ' o . ( 1 )  (21) 

2 n +  1 

bending-moment against time curve) is recorded. 
Therefore, it can be shown how the creep param- 
eters n and o~(1) can be determined without 
requiring additional tests. 

5 . 1 .  D e t e r m i n a t i o n  o f  n 
Three curves from Fig. 4 are shown once more in 
Fig. 5. Two straight lines with 95% and 90% of 

05 

and with this relationship it follows o 4 

M _ 2n + y(n§ tanh - -  
M~ n - 2 n +  1 

1/ r .  03 

X Mey  (n-x)/n] m dy (22) 
M .  J 

This definite integral cannot be solved in a closed 
manner, so it was evaluated numerically, ~ 02 

In Fig. 4 the result is represented in a normal- ~l~ 
ized form 

le4 

n~M/Moo = f Me/Mo~ (23) 
2 n +  1 

for several values of  n. 

I I / ] 

5. Procedure for estimation of creep 
parameters from bending-moment- 
deflection curves 

From each bending test usually a bending- 
moment against deflection curve (at least a 

n=2 
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Figure 5 Procedure for determination of creep exponent n 
from the shape of bending moment against deflection 
c u r v e s ,  
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Figure 6 Bending moment ratios as a function ofn. 

initial slope are drawn in this diagram. For each 
value of n the bending moments  at the points of  

intersection M(95%) and M(90%) are determined 
and the quotient  M(95%)/M(90%) is calculated. In 
Fig. 6 this quotient  is p lot ted against n. 

The dependence n = f[M(95%)/M(90%)] can be 
expressed by a polynomial  

1In = ao + a l X  + a2X z + aaX 3 + a 4 X 4 ( 2 4 )  

where X = 0.948 --M(95%)/M(90%) for X 1> 0.015 
with the coefficients 

ao = 0.05858 a~ = 1.7756 a2 = 1.2182 

a3 = - -4 .9715  a4 = 9.3219 

5.2. Determinat ion of M= ,  o= (1) 
Because of  Equation 21 the parameters M~ and 
o~o(1) are equivalent and related to the creep 
parameter D (Equation 3). For the determination 
of  M= an analogous procedure is suggested. In 
Fig. 6 the calculated quotients M(90%)/Moo are 
plot ted against n. 

In the range 1 ~< n ~< 20 the resulting curve can 
be given by 

M(90%) 2 n + l  

with 

m ~  gl 
- -  (bo + bt/n + bz/n z + b3/n 3 

+ b4/n 4) (25) 

bo = 0.824 bl = - -0 .1545  b2 = - -3 .1984  

b3 = 4.653 b 4  = - -  1.981 

From an experimental bending moment  against 

*Ceranox NH 206, Annawerk GmbH, R6dental, Germany. 

time curve the intersection with a 90% straight line 

is stated. Since n is known, the quotient  

M(90%)/Moo can be taken from Fig. 6 or 

Equation 25 and the corresponding Moo is deter- 

mined. Because of Equation 21, a=(1)  is also 
known. 

6. Measurement on HPSN at 1200 ~ C 
Experiments were performed with hot  pressed 
silicon nitride* containing 2.5 wt % MgO and with 
a density of  3.20 gcm -3. Specimens of  3.5 mm x 
3 .5ram x 4 5 m m  were diamond machined from 

plain parallel billets and annealed in a vacuum of  
10-s torr for 4 h  at 1200 ~ C. 

6.1. Determinat ion of the creep parameters 
Dynamic four-point bending tests (20 mm inner, 
40 mm outer span)were conducted at 1200 ~ C in a 
furnace with constant crosshead rates. Bending 

moment  against time and against deflection dia- 
grams were recorded. From the l o a d - t i m e  records 

an initial outer fibre stress rate de ( l )  was calcu- 
lated on the assumption of  elastic stress distri- 
bution in the cross-section. Fig. 7 shows a diagram 
recorded with a crosshead speed of v = 0.025 mm 
rain -1. The analysis gives M(95%) = 2800 N mm 
and ]14(90%) = 3090 N ram. With Equation 24 we 
find n ~--7 and from Equation 25 we obtain 
M(90%)/M~ = 0.805 -+ M~ = 3838 N mm. 

By application of  Equation 21 we obtain o=(1) 

= 293.3 N m m  -2 at the stress rate d e ( l ) =  0 .94N 
mm 2 sec -1. The diagrams of four single tests with 

nearly equal values n = 7 are plot ted point by 
point in a common diagram (Fig. 8). In addition, 
the dash-dotted line represents the dependence 

calculated with Equation 22. A good agreement 
between measurement and calculation is found. 

A greater number of bending tests lead to a 

range of  6 ~<n < 12. Fig. 9 shows the diagram 
with the maximum value found of n = 11.9. The 
calculated normalized bending moment  M/M= is 

plot ted point  by point and gives also a good agree- 
ment.  

To analyse the stress deformation behaviour - 
for instance by Equation 1 - the combination 
ED is of  interest. It can be determined by 
Equation 3 

EL) = de/a n 

The results of  Fig. 8 give a range of 

ED ~ 0 . 5 - 1 . 0  x 10-JTN-6mm12sec -1 
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Figure 7 Analysis of an experimentally 
obtained record (crosshead rate v = 0.025 
mm min -a ). 
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The Young's modulus at 1200~ measured by 
sonic resonance [3] is E ~  2 8 0 G N m  -z, and so it 
follows 

D ~ 1.8-3.6 x 10-23N-2mm14sec -1 

6. 1.1. Comparison with the literature 
In this investigation creep exponents n > 5 were 
obtained at 1200~ These values are mainly 
caused by transient creep. The data in literature 
are mostly restricted to the steady-state creep 

behaviour. 
In the case of low bending stresses values in the 

range l < n < 3  are often reported [3, 4, 8, 9]. 
Arons and Tien [10] obtained values 3.5 < n <  
5.5. At high stresses - that are necessarily reached 
in bending strength tests - distinctly higher values 
of  n were found. Measurements of Kossowsky etal. 

[3] gave at 1160~ n = 2.2 for o <  1 0 0 N m m  -2 
and n ~ 50 for o >  100Nmm -2. It should not be 
attempted to interpret such high exponents by 
simple physical models. 

6.2. Measurement of bending strength at 
1 2 0 0  ~ C 

Measurements of  bending strength were carried 
out with different crosshead rates. The evaluation 
was done in two ways. The "conventional" bending 
strength o~ was calculated by use of  the well- 
known formula 

oF = M~/W W = bh2/6 (26) 

where M~ means the bending moment at failure. 
The values of oF are shown in Fig. 10 by open 

circles. The conventional bending strength is a cor- 
rect value if creep can be  neglected. If  the deflec- 

1.0 

~ 05 

- -  - -  Equation ZZ with n = 7  

/N: o 
/ 

.,,+A 
A 

~.~) different 
specimens 

/ 
/ 

~ 7  . . . .  

/ 

o/ ), 
/ 

/ 

. /  
/ o  

/ 
/ 

/ 

T= 1200~ C 

v = 0.025 mm mir[ 

0.5 
t 

1.0 1.5 

Figure8 Comparison between 
calculated and measured bend- 
ing moment curves. 

1796 



n= 11.9 M(90~ 

o Equation 22 
M~ 

o 
;",., 

o15 ,:o i5 
MUM= 

Figure 9 Comparison between measured and calculated bending moment curves for n = 11.9. 

T: 1200~ 
v =0.025 mm rain -1 

tion rates are very low, deviations from linearity 
have to be taken into account. Instead of Equation 
26, the more realistic outer fibre stress at the 
moment of failure as(l)  should be used. 

Outer fibre stresses of(l) ,  calculated with 
Equation 10, are depicted in Fig. 10. The straight 
line drawn in addition represents the stress a=(1). 
It constitutes an upper limit for bending strength 
af(1); since Equation (10)  

af(1) < o~(1) 
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Figure lO Bending strength of HPSN at 1200 ~ C as a func- 
tion of stress rate. 

must always be fulfilled. A comparison between 
of( l )  and a=(1) is given in [2]. 

7. Conc lus ion  
Dynamic bending tests at high temperatures can 
be evaluated in such a way that the transient creep 
parameters can be determined as well as the param- 
eters of subcritical crack extension. This is illus- 
trated in Fig. 11. 

(a) From the conventional bending strength o; 
the true outer fibre stress at failure as(l)  can be 
calculated (Fig. 1 la). 

(b) In the case of very low deflection rates the 
strength behaviour is governed by creep effects. 
From the asymptotic straight line in Fig. 1 lb the 
creep parameters n and D are obtained. Using 
Equations 3 and 10 the approximated relation 

of(1)-~ o=(]) ~ b 1'" 

is fulfilled. 
(c) At high deflection rates, associated with 

linear load-deflection curves, the influence of  
creep will vanish, which leads to 

o;  = o f ( l )  

The asymptotic straight line shows the well-known 
interdependency of strength and stress rates [11 ] 

of(I)  cc 6 I/(N+I) 

caused by subcritical crack growth, N being the 
crack growth exponent. 
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Figure 11 Influence of creep behaviour and subcritical crack growth on true outer fibre stress at failure in dynamic 
bending tests (schematically). 
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